59
WriteLine("x ^ y + sqrt(x) + integral(sqrt(x) / a, x, 1) + derivative(sqrt(x) / a, x, 1) + limit(sqrt(x) / a, x, +oo)".Latexise());
1
// AngouriMath 1.3.0-preview.3
2
using AngouriMath; using AngouriMath.Extensions; using static System.Console; using static AngouriMath.MathS;
3
4
// Hello world in AM
5
WriteLine("Alright, let's start from a hello world");
6
WriteLine("2 + 3 is " + "2 + 3".EvalNumerical().Stringize());
7
WriteLine();
8
9
// Simplify
10
WriteLine("x + 3 + 4 + x + 2x + 23 + a".Simplify().Stringize());
11
WriteLine();
12
13
// Build expressions
14
var x = Var("x");
15
var expr = Sin(x) + Sqrt(x) + Integral(Sin(Sin(x)), x);
16
WriteLine(expr.Stringize());
17
WriteLine();
18
19
// Derive
20
WriteLine(expr.Differentiate(x).Simplify().Stringize());
21
WriteLine();
22
23
// Solve a simple equation
24
WriteLine("x2 = 3".Solve("x").Stringize());
Cached Result
Alright, let's start from a hello world
2 + 3 is 5
30 + a + 4 * x
sin(x) + sqrt(x) + integral(sin(sin(x)), x)
cos(x) + sin(sin(x)) + x ^ (-1/2) / 2
{ sqrt(3), -sqrt(3) }
{ 2 }
{ ln(sqrt((-(1/2 + -c) - sqrt((1/2 + -c) ^ 2 - 4 * (-1/4 + -1/2i * c) * (-1/4 + 1/2i * c))) / (2 * (-1/4 + -1/2i * c))) ^ (1 / a)) / i, ln((-sqrt((-(1/2 + -c) - sqrt((1/2 + -c) ^ 2 - 4 * (-1/4 + -1/2i * c) * (-1/4 + 1/2i * c))) / (2 * (-1/4 + -1/2i * c)))) ^ (1 / a)) / i, ln(sqrt((-(1/2 + -c) + sqrt((1/2 + -c) ^ 2 - 4 * (-1/4 + -1/2i * c) * (-1/4 + 1/2i * c))) / (2 * (-1/4 + -1/2i * c))) ^ (1 / a)) / i, ln((-sqrt((-(1/2 + -c) + sqrt((1/2 + -c) ^ 2 - 4 * (-1/4 + -1/2i * c) * (-1/4 + 1/2i * c))) / (2 * (-1/4 + -1/2i * c)))) ^ (1 / a)) / i }
\left\{ 6, -9 \right\} \cup \left(-\infty ; -9\right) \cup \left(6; \infty \right)
\left\{ 1, 2 \right\}
\left[3; \infty \right)
\mathbb{R}
\left\{ x : {x}^{8}+a x < 0 \right\}
A \cup B
A \cap B
A \setminus B
{ 1, 2, 3, 5 }
[a; b]
2 * x + a
\frac{{x}^{3}}{3}+a \frac{{x}^{2}}{2}
a / (-h)
True
a b c F
[[False, False, False, True], [False, False, True, True], [False, True, False, True], [False, True, True, True], [True, False, False, True], [True, False, True, True], [True, True, False, False], [True, True, True, True]]
{x}^{y}+\sqrt{x}+\int \left[\frac{\sqrt{x}}{a}\right] dx+\frac{d\left[\frac{\sqrt{x}}{a}\right]}{dx}+\lim_{x\to \infty } \left[\frac{\sqrt{x}}{a}\right]
2 + 3 is 5
30 + a + 4 * x
sin(x) + sqrt(x) + integral(sin(sin(x)), x)
cos(x) + sin(sin(x)) + x ^ (-1/2) / 2
{ sqrt(3), -sqrt(3) }
{ 2 }
{ ln(sqrt((-(1/2 + -c) - sqrt((1/2 + -c) ^ 2 - 4 * (-1/4 + -1/2i * c) * (-1/4 + 1/2i * c))) / (2 * (-1/4 + -1/2i * c))) ^ (1 / a)) / i, ln((-sqrt((-(1/2 + -c) - sqrt((1/2 + -c) ^ 2 - 4 * (-1/4 + -1/2i * c) * (-1/4 + 1/2i * c))) / (2 * (-1/4 + -1/2i * c)))) ^ (1 / a)) / i, ln(sqrt((-(1/2 + -c) + sqrt((1/2 + -c) ^ 2 - 4 * (-1/4 + -1/2i * c) * (-1/4 + 1/2i * c))) / (2 * (-1/4 + -1/2i * c))) ^ (1 / a)) / i, ln((-sqrt((-(1/2 + -c) + sqrt((1/2 + -c) ^ 2 - 4 * (-1/4 + -1/2i * c) * (-1/4 + 1/2i * c))) / (2 * (-1/4 + -1/2i * c)))) ^ (1 / a)) / i }
\left\{ 6, -9 \right\} \cup \left(-\infty ; -9\right) \cup \left(6; \infty \right)
\left\{ 1, 2 \right\}
\left[3; \infty \right)
\mathbb{R}
\left\{ x : {x}^{8}+a x < 0 \right\}
A \cup B
A \cap B
A \setminus B
{ 1, 2, 3, 5 }
[a; b]
2 * x + a
\frac{{x}^{3}}{3}+a \frac{{x}^{2}}{2}
a / (-h)
True
a b c F
[[False, False, False, True], [False, False, True, True], [False, True, False, True], [False, True, True, True], [True, False, False, True], [True, False, True, True], [True, True, False, False], [True, True, True, True]]
{x}^{y}+\sqrt{x}+\int \left[\frac{\sqrt{x}}{a}\right] dx+\frac{d\left[\frac{\sqrt{x}}{a}\right]}{dx}+\lim_{x\to \infty } \left[\frac{\sqrt{x}}{a}\right]