6
1
// AngouriMath 1.2.0
2
using System; using AngouriMath.Extensions;
3
4
Console.WriteLine("x2 + 2 a x = -a2".Solve("x").Simplify());
5
Console.WriteLine("x / c + d > 0 or sqrt(x) = 0".Solve("x").Simplify());
6
Console.WriteLine(("x + 3z2", "y + x2", "z - c + x").SolveSystem("x", "y", "z").Simplify());
Cached Result
{ -a }
{ 0 } \/ (-c * d; +oo)
Matrix[4 x 3]
-1/2 * (1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) -1/4 * (1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) ^ 2 i * sqrt(-1/6) * sqrt(1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2))
1/2 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) -1/4 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) ^ 2 sqrt(-1/6 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)))
-1/2 * (1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) -1/4 * (1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) ^ 2 -i * sqrt(-1/6) * sqrt(1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2))
1/2 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) -1/4 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) ^ 2 -sqrt(-1/6 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)))
{ 0 } \/ (-c * d; +oo)
Matrix[4 x 3]
-1/2 * (1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) -1/4 * (1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) ^ 2 i * sqrt(-1/6) * sqrt(1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2))
1/2 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) -1/4 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) ^ 2 sqrt(-1/6 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)))
-1/2 * (1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) -1/4 * (1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) ^ 2 -i * sqrt(-1/6) * sqrt(1/3 + -2 * c + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2))
1/2 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) -1/4 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)) ^ 2 -sqrt(-1/6 * (2 * c - 1/3 + sqrt(-4 * c ^ 2 + (1/3 + -2 * c) ^ 2)))